

Certificate of Analysis

STANDARD REFERENCE MATERIAL: CDN-GS-1P5X

Gold	1.531 g/t ± 0.108 g/t	Certified value	30g FA / AA or ICP Finish
Gold	1.535 g/t ± 0.108 g/t	Certified value	50g FA / AA or ICP Finish
Gold	1.520 g/t ± 0.101 g/t	Certified value	Gamma ray- photon assay instrument
Total S	0.55 % ± 0.05 %	Certified value	IR Spectroscopy
Total C	0.46 % ± 0.03 %	Certified value	IR Spectroscopy

Recommended values and the "Between Lab" Two Standard Deviations

Note 1: Standards with an RSD of near or less than 5% are certified; RSD's of between 5% and 15% are Provisional; RSDs over 15% are Indicated. Provisional and Indicated values cannot be used to monitor accuracy with a high degree of certainty.

PREPARED BY:
PREPARATION CERTIFIED BY:
CERTIFIED BY INDEPENDENT GEOCHEMIST:
DATE OF CERTIFICATION:

CDN Resource Laboratories Ltd. Ali Alizadeh, MSc, MBA, P Geo Dr. Barry Smee., Ph.D., FGC April 23rd, 2024

ORIGIN OF MATERIAL:

Standard CDN-GS-1P5X was prepared from ore that was supplied by Agnico Eagle Mines from their Detour mine, located in northeastern Ontario, Canada.

The deposit lies within the Abitibi Greenstone Belt in the Superior Province of the Canadian Shield.

Supracrustal rocks within the project area consist of a thick sequence of mafic to ultramafic lithologies, which are predominantly volcanic in origin. There are two recognized episodes of gold mineralization at the Detour Lake and West Detour deposits. The first episode occurs as a wide and predominantly gold-bearing, low-sulfide quartz vein stockwork. The second episode represents a subsequent stage of gold mineralization that overlays the initial gold-bearing stockwork. Sulfide-rich gold mineralization mainly occupies structural sites within deformed quartz veins, fractures, and crosscutting veins. The distribution of higher sulfide mineralization is strongly influenced by the kinematic orientation, with concentrations of pyrite and pyrrhotite.

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized, and then passed twice through a 270-mesh screen. The +270 material was discarded. The -270 material was mixed for 5 days in a double-cone mixer. Splits were taken and sent to 15 commercial laboratories for round robin assaying.

Assay Procedures:

Au: 30 gr and 50 gr Fire assay pre-concentration, ICP or AA finish

Au: Gamma ray analysis by photon assay instrument

Au: Bulk leach extractable gold by Cyanide Leach extraction AA finish (3 Samples Only-500g Sample Size).

Au: Accelerated cyanide leach, LeachWELL Assay Tabs[™] with AAS finish. 4hr Leach. (3 Samples Only- 1Kg Sample Size) **Note:** Bulk leach extractable gold can help decrease the influence of nuggety gold making results more reproducible.

TS and TC: IR Spectroscopy

Statistical Procedures:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The means and standard deviations were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing database. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual "between-laboratory" standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Quality Assurance and Quality Control Procedures:

Screening Test: After completion of homogenization, three samples, 300g each of homogenized material was randomly collected and was re-screened by a testing sieve. Oversize material of this standard based on CDN's screening test was ~1.0%.

Homogeneity Test: 30 samples were selected selectively throughout the batch and were sent to an independent assay Laboratories for Homogeneity testing following directions of Annex B, Homogeneity and Stability of proficiency test items, ISO 13528:2015 Guidelines.

Assay results went through a statistical work-up by checking the mean, standard deviation, and %RSD. Based on performed statistical works outlined by ISO 13528; CDN-GS-1P5X is statistically homogenized (Appendix III).

LEGAL NOTICE:

This certificate and the reference material described in it have been prepared with due care and attention. However, CDN Resource Laboratories Ltd. nor Barry Smee accept any liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Ali Alizadeh, MSc, MBA, P.Geo.

Geochemist

Dr. Barry Smee, PhD, FGC

APPENDIX I:

Whole rock analysis and 30 element ICP analysis (4-acid digestion) were also conducted on 3 samples.

APPROXIMATE CHEMICAL COMPOSITION (by whole rock analysis):

Analyte	Percent	Analyte	Percent
SiO ₂	51.4	K₂O	1.0
Al ₂ O ₃	13.6	TiO ₂	0.7
Fe ₂ O ₃	11.3	MnO	0.2
CaO	9.0	LOI	2.6
MgO	7.6	Total S	0.6
Na₂O	2.0	Total C	0.5

Participating Laboratories: (not in same order as table of assays)

Activation Labs, Ancaster, Ontario, Canada	Bureau Veritas, Vancouver, BC, Canada
Activation Labs, Thunder Bay, Ontario, Canada	Certimin S.A., Lima, Peru
ALS, Brisbane, Australia	Intertek Genalysis, Maddington, Australia
ALS, Perth, Australia	MS Analytical, Langley, BC, Canada
ALS Lima, Peru	MS Analytical, Prince George, BC, Canada
ALS, Loughrea, Ireland	MS Analytical, Val-d'Or, QB, Canada
ALS Johannesburg, South Africa	MS Analytical, Timmins, ON, Canada
ALS Kalgoorlie, Australia	SGS Lakefield, ON, Canada
ALS Canada, North Vancouver, BC, Canada	SGS, Vancouver, BC, Canada
Bureau Veritas, Perth, Australia	

Three samples were subjected to cyanide leach assays, table below illustrates the results of these three samples. APPENDIX II: BLEG- Bulk leach extractable gold Assay Results

Sample	Accelerated cyanide leach, LeachWELL Assay Tabs™ with AAS finish. 4hr Leach	Bulk leach extractable gold Cyanide Leach extraction AA finish
	Au (ppm)	
GS-1P5X-1	1.370	1.500
GS-1P5X-2	1.361	1.495
GS-1P5X-3	1.443	1.490

APPENDIX II- Continue: Results from round-robin assaying:

Comula	Lab 1	Lab 2	Lab 3	Lab 8	Lab 4	Lab 5	Lab 6	Lab 7	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14	Lab 15
Sample			Au (g/t) 30 gr Fire assay pre-concentration, ICP or AA finish												
	1.46	1.51	1.515	1.605	1.530	1.495	1.545	1.540	1.50	1.500	1.484	1.573	1.479	1.43	1.56
	1.39	1.50	1.505	1.620	1.465	1.620	1.605	1.625	1.53	1.379	1.544	1.574	1.544	1.40	1.47
	1.50	1.51	1.585	1.590	1.560	1.485	1.535	1.565	1.44	1.453	1.517	1.557	1.577	1.53	1.59
5X	1.45	1.59	1.480	1.550	1.525	1.515	1.610	1.585	1.59	1.450	1.473	1.630	1.547	1.61	1.43
S-1P	1.51	1.59	1.555	1.550	1.520	1.610	1.545	1.435	1.47	1.382	1.590	1.558	1.463	1.45	1.48
Ŭ-Z	1.46	1.42	1.565	1.570	1.600	1.520	1.580	1.590	1.51	1.420	1.555	1.482	1.410	1.43	1.51
9	1.46	1.60	1.470	1.540	1.530	1.545	1.635	1.570	1.45	1.293	1.510	1.454	1.522	1.52	1.46
	1.50	1.64	1.545	1.560	1.550	1.515	1.660	1.445	1.49	1.398	1.581	1.563	1.435	1.53	1.53
	1.46	1.47	1.605	1.610	1.565	1.595	1.540	1.500	1.63	1.547	1.529	1.511	1.536	1.53	1.50
	1.51	1.56	1.540	1.535	1.360	1.565	1.525	1.565	1.64	1.471	1.549	1.555	1.517	1.58	1.57
Mean	1.47	1.54	1.537	1.573	1.521	1.547	1.578	1.542	1.53	1.429	1.533	1.546	1.503	1.50	1.51
Std. Dev	0.04	0.07	0.04	0.03	0.07	0.05	0.05	0.06	0.07	0.07	0.04	0.05	0.05	0.07	0.05
% RSD	2.50	4.42	2.86	1.97	4.37	3.14	2.99	4.07	4.71	5.00	2.50	3.27	3.59	4.65	3.45
				Au (g/t) 50 gr Fire	assay pi	re-conce	ntration	, ICP or	AA finish	1				
	1.49	1.56	1.585	1.530	1.575	1.505	1.590	1.520	1.44	1.468	1.515	1.504	1.479	1.64	1.55
	1.54	1.52	1.480	1.540	1.530	1.530	1.540	1.685	1.54	1.473	1.482	1.525	1.392	1.58	1.62
	1.54	1.44	1.525	1.585	1.485	1.580	1.570	1.590	1.57	1.508	1.515	1.571	1.438	1.59	1.48
5X	1.45	1.52	1.630	1.515	1.565	1.445	1.625	1.685	1.54	1.547	1.591	1.550	1.467	1.59	1.55
S-1P	1.51	1.59	1.560	1.590	1.590	1.495	1.500	1.550	1.59	1.504	1.577	1.588	1.395	1.59	1.58
0-Z	1.46	1.52	1.635	1.545	1.535	1.605	1.640	1.575	1.58	1.595	1.512	1.507	1.462	1.51	1.52
C	1.46	1.58	1.615	1.455	1.560	1.495	1.625	1.535	1.66	1.414	1.592	1.572	1.448	1.54	1.53
	1.52	1.44	1.550	1.450	1.625	1.530	1.510	1.585	1.58	1.473	1.563	1.598	1.397	1.53	1.61
	1.46	1.53	1.535	1.425	1.595	1.425	1.515	1.560	1.54	1.569	1.594	1.576	1.500	1.70	1.48
	1.53	1.49	1.490	1.510	1.435	1.565	1.550	1.555	1.58	1.518	1.500	1.641	1.417	1.47	1.49
Mean	1.50	1.52	1.561	1.515	1.550	1.518	1.567	1.584	1.56	1.507	1.544	1.563	1.440	1.57	1.54
Std. Dev	0.04	0.05	0.06	0.06	0.06	0.06	0.05	0.06	0.06	0.05	0.04	0.04	0.04	0.07	0.05
% RSD	2.42	3.39	3.54	3.70	3.62	3.75	3.30	3.62	3.56	3.55	2.81	2.74	2.65	4.18	3.30

	L	ab 1		Lab 2		Lab	3	Lal	b 4		Lab 5			Lab 6	
				Au	(g/t) by	Gamma ra	y analys	is by pho	oton ass	ay instru	ment				
	1	L.51		1.58		1.50)	1.4	85		1.513			1.539	
5X	1	L.49		1.53		1.54	1	1.5	15		1.629			1.566	
-1P	1	L.49		1.48		1.47	7	1.5	04		1.543			1.554	
-9S-	1	L.50		1.56		1.53	3	1.4	59		1.606			1.549	
DN	1	1.47		1.60		1.51	L	1.4	21		1.530			1.529	
Ŭ	1	1.55		1.50		1.44	+	1.4	01		1.603			1.520	
	1	1.45		1.55		1.40)	1.5	58		1.572			1.554	
	1	L.45		1.60		1.48	3	1.4	38		1.555			1.590	
	1	L.52		1.57		1.49	9	1.4	51		1.620			1.619	
Mean	1	L.49		1.54		1.48	3	1.4	81		1.573			1.555	
Std. Devn.	(0.03		0.05		0.04	1	0.0	041		0.04			0.03	
% RSD	4	2.07		2.98		2.56	0	2.7	47		2.53			1.94	
	Total S by IR Spectroscopy														
	-	-	-	0.55	0.63	-	-	0.47	-	-	0.59	-	0.52	-	-
	-	-	-	0.55	0.61	-	-	0.48	-	-	0.59	-	0.53	-	-
	-	-	-	0.56	0.64	-	-	0.48	-	-	0.59	-	0.53	-	-
5X	-	-	-	0.54	0.64	-	-	0.48	-	-	0.59	-	0.54	-	-
5-1P	-	-	-	0.55	0.63	-	-	0.48	-	-	0.56	-	0.51	-	-
Э-Ч	-	-	-	0.55	0.62	-	-	0.47	-	-	0.59	-	0.54	-	-
CD	-	-	-	0.55	0.63	-	-	0.48	-	-	0.57	-	0.54	-	-
	-	-	-	0.54	0.64	-	-	0.47	-	-	0.57	-	0.54	-	-
	-	-	-	0.53	0.64	-	-	0.48	-	-	0.58	-	0.54	-	-
	-	-	-	0.54	0.64	-	-	0.47	-	-	0.57	-	0.56	-	-
Mean	-	-	-	0.55	0.63	-	-	0.48	-	-	0.58	-	0.54	-	-
Std. Dev	-	-	-	0.01	0.01	-	-	0.01	-	-	0.01	-	0.01	-	-
% RSD	-	-	-	1.54	1.63	-	-	1.08	-	-	1.99	-	2.53	-	-
						Total C by	IR Spec	troscopy	/						
	-	-	-	-	0.46	-	-	0.53	-	-	0.44	-	0.46	-	-
	-	-	-	-	0.44	-	-	0.53	-	-	0.43	-	0.47	-	-
	-	-	-	-	0.44	-	-	0.53	-	-	0.43	-	0.47	-	-
5X	-	-	-	-	0.45	-	-	0.52	-	-	0.44	-	0.46	-	-
S-1P	-	-	-	-	0.45	-	-	0.51	-	-	0.44	-	0.46	-	-
D-N	-	-	-	-	0.45	-	-	0.52	-	-	0.44	-	0.47	-	-
C	-	-	-	-	0.44	-	-	0.53	-	-	0.44	-	0.47	-	-
	-	-	-	-	0.45	-	-	0.54	-	-	0.44	-	0.47	-	-
	-	-	-	-	0.46	-	-	0.52	-	-	0.45	-	0.47	-	-
	-	-	-	-	0.45	-	-	0.52	-	-	0.43	-	0.47	-	-
Mean	-	-	-	-	0.45	-	-	0.53	-	-	0.44	-	0.47	-	-
Std. Dev	-	-	-	-	0.01	-	-	0.01	-	-	0.01	-	0.00	-	-
% RSD	-	-	-	-	1.64	-	-	1.62	-	-	1.44	-	1.03	-	-

Notes: TS results from Lab 5 and were removed for failing the t test.

APPENDIX III: QAQC

QA/QC PROCEDURES.

All standards prepared by CDN Resource Laboratories will undergo QC Screening and Homogeneity testing. All material will be tested for nuggety gold and silver.

- CDN Resource Laboratories QAQC procedures include:
 - Screen QC After completion of homogenization, 300g of material will be collected from the mixer and will be re-screened through testing sieve. Over size should not exceed 3% of the total screened material. If over size exceeds 3% of the total screened material, material needs to be re-screened and rehomogenized.
 - Homogeneity QC During homogeneity test, 30 randomly selected samples from CDN-GS-1P5X were sent to one of the round-robin participating labs. Each sample was assaying twice and reported separately. Assay results will go through a statistical work-up by checking the mean, standard deviation, and %RSD. Based on performed statistical works outlined by ISO 13528.

Table below illustrates percentages of over size (+275 mesh) material in CDN-GS-1P5X.

Standard	Study Date	Total weight Screened (g)	Total weight Over size (g)	Percentage
P5X	12/28/2023	300	3.5	1.2%
-GS-1I	12/28/2023	300	4	1.3%
CDN	12/28/2023	300	3.5	1.2%

Table below shows homogeneity test results of CDN-GS-1P5X

	Au Original	Au Repeat	Between Sample Variance Wt	Sample Avg. Xt	Stdev of Sample Avg	Within-Sample Std.
	1.472	1.475	0.003	1.474	2.584	0.000
	1.540	1.508	0.032	1.524	2.424	0.001
	1.432	1.466	0.034	1.449	2.663	0.001
	1.476	1.393	0.083	1.435	2.711	0.007
	1.464	1.393	0.071	1.429	2.731	0.005
	1.423	1.504	0.081	1.464	2.616	0.007
	1.546	1.479	0.067	1.513	2.460	0.004
	1.590	1.563	0.027	1.577	2.263	0.001
	1.578	1.567	0.011	1.573	2.275	0.000
	1.535	1.491	0.044	1.513	2.458	0.002
	1.510	1.506	0.004	1.508	2.474	0.000
2	1.522	1.622	0.100	1.572	2.277	0.010
P5)	1.504	1.453	0.051	1.479	2.568	0.003
iS-1	1.521	1.489	0.032	1.505	2.484	0.001
N-O	1.657	1.529	0.128	1.593	2.214	0.016
8	1.50	1.58	0.080	1.540	2.374	0.006
	1.55	1.47	0.080	1.510	2.468	0.006
	1.53	1.54	0.010	1.535	2.390	0.000
	1.63	1.65	0.020	1.640	2.076	0.000
	1.57	1.61	0.040	1.590	2.223	0.002
	1.59	1.61	0.020	1.600	2.193	0.000
	1.54	1.52	0.020	1.530	2.405	0.000
	1.63	1.60	0.030	1.615	2.149	0.001
	1.61	1.56	0.050	1.585	2.238	0.003
	1.61	1.65	0.040	1.630	2.105	0.002
	1.67	1.53	0.140	1.600	2.193	0.020
	1.55	1.58	0.030	1.565	2.298	0.001
	1.59	1.61	0.020	1.600	2.193	0.000
	1.49	1.47	0.020	1.480	2.563	0.000
	1.55	1.63	0.080	1.590	2.223	0.006
	Statistics		Gavg	SX	SW	SS
Mean	1.546	1.535	3.081	2.257	0.060	2.256
SD	0.0623	0.0706	С	C SQRT		
RSD	4.031	4.599	8.6087	2.93		

Based on Statistical procedures outlined in Annex B, ISO 13528:2015 guidelines, if "SS is < square root of C" Standard is considered homogeneous. **CDN-GS-1P5X is statistically homogenous**

APPENDIX IV: General Notes

Intended Use

This Certified Reference Material, fit for use as a control sample in routine assay laboratory quality control when inserted within runs of test samples and measured in parallel to test samples. This material can also be used for method development, use as independent calibration verification check standard or for validation of accuracy in a method validation exercise.

This CRM can also be used to assess inter-laboratory or instrument bias and establish within-laboratory precision and within-laboratory reproducibility. The certified concentrations and expanded uncertainty for this material are property values based on an inter-laboratory measurement campaign and reflect consensus results from the laboratories that took part in the exercise.

Handling

Do not use if the seal is broken or there are any signs of contamination. The material is packaged in either Tin Tie envelopes, foil envelopes, or jars that must be shaken before use.

Storage information

The material should be stored in a dry place, in such a way that it does not compromise the integrity of the CRM. The material should be stored in conditions which will ensure it does not absorb moisture. Certificate is not valid if re-packaged by a third party.

Metrological Traceability

The values quoted herein are based on the consensus values derived from statistical analysis of the data from an interlaboratory measurement program. Traceability to SI units is via the standards used by the individual laboratories all of which are accredited to the ISO17025 general requirements for the competence of testing and calibration laboratories and who have maintained measurement traceability during the analytical process.

Period of Validity

The certified values are valid for this product, while still sealed in its original packaging, until notification to the contrary. The material's stability will undergo regular testing every five years throughout its inventory duration. Should product stability become an issue, all customers will be notified and notification to that effect will be placed on the http://www.cdnlabs.com/ website.

Minimum Sample Size

Most of the laboratory's reporting used a 0.5g sample size for the ICP and a 30g sample size for the fire assay. Our certified gold values are based on 30g Fire Assay determinations. For optimal results, we strongly recommend you assay our standards with similar methods using "at least" 30g of material. Using a smaller sample weight may result in erratic values. These are the recommended minimum sample sizes for the use of this material.

Statistical Procedures

Round robin samples were sent to participating laboratories.

The mean and standard deviation for all data were calculated. Outliers were defined as samples beyond the mean ± 2 Standard Deviations from all data. These outliers were removed from the data and a new mean and standard deviation were determined. This method makes use of actual "between-laboratory" standard deviation in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses.

Statistical analysis was carried out by Dr. Barry Smee, an independent statistician. A statistical report is provided along with a certificate of analysis.