CDN Resource Laboratories Ltd.

#2, 20148 - 102nd Ave, Langley, B.C., Canada, V1M 4B4, 604-882-8422, Fax: 604-882-8466 (www.cdnlabs.com)

REFERENCE MATERIAL: CDN-GS-30C

Recommended value and the "Between Laboratory" two standard deviations

	Gold	32.14 g/t	± 0.89 g/t	Certified value	30g FA / Gravimetric				
PREPARED BY: CDN Resource Laboratories Ltd.									
CERTIFIED BY:	ERTIFIED BY: Duncan Sanderson, B.Sc., Licensed Assayer of British Columbi								
INDEPENDENT (GEOCHEMIST:	Dr.	Dr. Barry Smee., Ph.D., P. Geo.						

December 20th, 2018

ORIGIN OF REFERENCE MATERIAL:

DATE OF CERTIFICATION:

Standard CDN-GS-30C was prepared from material that became available to CDN Resource Laboratories from Barrick's Turquoise Ridge gold mine, Nevada.

The Turquoise Ridge deposit is a typical Carlin-type deposit and is characterized by structurally and stratigraphically controlled, sediment-hosted, replacement deposits containing disseminated micron sized gold. The gold occurs in arsenic-rich rims forming on pyrite, chiefly within decalcified, carbonaceous rocks.

METHOD OF PREPARATION:

Reject ore material was dried, crushed, pulverized and then passed through a 270-mesh screen. The +270 material was discarded. The -270 material was mixed for 5 days in a double-cone blender. Splits were taken and sent to 15 commercial laboratories for round robin assaying.

ASSAY PROCEDURES:

Au: 30 gr Fire assay pre-concentration, gravimetric finish.

Whole rock analysis and 30 element ICP analysis (4-acid digestion) were also conducted on 5 samples.

APPROXIMATE CHEMICAL COMPOSITION (by whole rock analysis):

	Percent		Percent
SiO2	56.2	Na2O	<0.1
Al2O3	15.8	MgO	1.1
Fe2O3	5.4	K2O	3.6
CaO	4.8	TiO2	0.6
MnO	<0.1	LOI	11.8
Total S	4.6	Total C	1.2

STATISTICAL PROCEDURES:

The final limits were calculated after first determining if all data was compatible within a spread normally expected for similar analytical methods done by reputable laboratories. Data from any one laboratory was removed from further calculations when the mean of all analyses from that laboratory failed a t test of the global means of the other laboratories. The mean and standard deviation were calculated using all remaining data. Any analysis that fell outside of the mean ±2 standard deviations was removed from the ensuing data base. The mean and standard deviations were again calculated using the remaining data. This method is different from that used by Government agencies in that the actual "between-laboratory" standard deviation is used in the calculations. This produces upper and lower limits that reflect actual individual analyses rather than a grouped set of analyses. The limits can therefore be used to monitor accuracy from individual analyses, unlike the Confidence Limits published on other standards.

Our certified gold values are based on 30 g Fire Assay determinations. For optimal results, we strongly recommend you assay our standards with similar methods using "at least" 30 g of material. Using a smaller sample weight may result in erratic values.

Fire Assay	Lab 1	Lab 2	Lab 3	Lab 4	Lab 5	Lab 6	Lab 7	Lab 8	Lab 9	Lab 10	Lab 11	Lab 12	Lab 13	Lab 14	Lab 15
Gravimetric	Au g/t														
GS-30C1	32.2	32.9	32.5	30.9	31.9	32.09	30.6	31.17	31.70	32.00	32.78	31.95	31.88	32.28	33.3
GS-30C2	32.0	32.5	32.4	32.2	32.2	32.03	29.8	30.99	31.56	32.03	32.77	32.22	32.04	32.63	32.3
GS-30C3	31.9	31.9	32.5	30.9	32.4	32.05	30.4	32.00	31.76	32.12	32.61	31.47	31.98	32.63	32.6
GS-30C4	32.3	32.2	31.9	29.5	32.3	32.28	30.9	31.76	31.70	32.21	32.85	32.02	32.88	32.70	33.0
GS-30C5	32.0	31.9	32.0	32.0	32.2	32.34	30.9	31.58	31.49	31.98	32.97	31.89	33.44	32.47	32.4
GS-30C6	31.1	31.6	31.8	31.8	32.3	31.92	29.9	31.53	31.47	32.21	32.53	31.80	33.83	32.52	32.7
GS-30C7	31.7	32.6	29.4	32.0	32.4	31.78	29.5	30.74	31.43	31.98	32.67	32.57	32.35	32.50	33.0
GS-30C8	31.8	32.4	32.1	31.1	32.3	32.05	29.9	31.94	31.67	32.05	32.68	32.56	31.74	32.40	33.5
GS-30C9	32.2	32.3	31.7	32.1	31.9	32.27	30.7	30.07	31.64	31.99	32.94	31.67	31.96	32.51	32.5
GS-30C10	32.0	31.9	31.4	31.2	31.9	31.08	29.2	32.26	31.50	32.24	32.84	32.18	32.20	32.47	32.8
Mean	31.9	32.2	31.8	31.4	32.2	31.99	30.2	31.40	31.59	32.08	32.76	32.03	32.43	32.51	32.8
Std. Devn.	0.343	0.397	0.907	0.833	0.204	0.362	0.601	0.666	0.116	0.105	0.142	0.358	0.715	0.122	0.390
% RSD	1.07	1.23	2.85	2.65	0.64	1.13	1.99	2.12	0.37	0.33	0.43	1.12	2.20	0.37	1.19

RESULTS FROM ROUND ROBIN ASSAYING:

PARTICIPATING LABORATORIES: (not in same order as table of assays)

AGAT Labs, ON, Canada	Certimin S.A., Lima, Peru					
ALS Canada, North Vancouver, BC, Canada	MS Analytical, Langley, BC, Canada					
ALS, Loughrea, Ireland	SGS, Vancouver, BC, Canada					
ALS, Lima, Peru	SGS, Lima, Peru					
ALS, Perth Australia	SGS, Lakefield, Ontario, Canada					
Bureau Veritas, Perth, Australia	Skyline Assayers & Laboratories, AZ, USA					
Bureau Veritas, Reno, USA	TSL Laboratories Ltd., Saskatoon, SK, Canada					
Bureau Veritas, Vancouver, BC, Canada						

LEGAL NOTICE:

This certificate and the reference material described in it have been prepared with due care and attention. However, CDN Resource Laboratories Ltd. nor Barry Smee accept any liability for any decisions or actions taken following the use of the reference material. Our liability is limited solely to the cost of the reference material.

Certified by

Duran Sanderson

Duncan Sanderson, Certified Assayer of B.C.

Geochemist

Dr. Barry Smee, Ph.D., P. Geo.